A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.
Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1].
The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])|
In other words, it is the absolute difference between the sum of the first part and the sum of the second part.
For example, consider array A such that:
A[0] = 3
A[1] = 1
A[2] = 2
A[3] = 4
A[4] = 3
We can split this tape in four places:
P = 1, difference = |3 − 10| = 7P = 2, difference = |4 − 9| = 5P = 3, difference = |6 − 7| = 1P = 4, difference = |10 − 3| = 7
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A of N integers, returns the minimal difference that can be achieved.
For example, given:
A[0] = 3
A[1] = 1
A[2] = 2
A[3] = 4
A[4] = 3
the function should return 1, as explained above.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [2..100,000];each element of array A is an integer within the range [−1,000..1,000].
class Solution {
public int solution(int[] A) {
int rightSum = 0;
int leftSum = 0;
int result = Integer.MAX_VALUE;
for(int i=0; i<A.length; i++){
rightSum += A[i];
}
int temp = 0;
for(int i=1; i<A.length; i++){
rightSum -= A[i-1];
leftSum += A[i-1];
temp = Math.abs(rightSum -leftSum);
if(temp<result) result = temp;
}
return result;
}
}
'algorithm > Codility' 카테고리의 다른 글
Codility[Lesson 6] - Sorting(MaxProdictOfThree) (0) | 2021.08.27 |
---|---|
Codility[Lesson 3] - Time Complexity(PermMissingElem) (0) | 2021.08.26 |
Codility[Lesson 3] - Time Complexity(FrogJmp) (0) | 2021.08.26 |
Codility[Lesson 2] - Arrays(OddOccurrencesInArray) (0) | 2021.08.08 |
Codility[Lesson 2] - Arrays(CyclicRotation) (0) | 2021.08.08 |
댓글